Band offset determination for amorphous Al₂O₃ deposited on bulk AlN and atomic-layer epitaxial AlN on sapphire

Cite as: Appl. Phys. Lett. **117**, 182103 (2020); https://doi.org/10.1063/5.0025835 Submitted: 18 August 2020 . Accepted: 26 October 2020 . Published Online: 05 November 2020

D Chaker Fares, Fan Ren, Marko J. Tadjer, D Jeffrey Woodward, Michael A. Mastro, Boris N. Feigelson, Charles R. Eddy, and S. J. Pearton

COLLECTIONS

Paper published as part of the special topic on Ultrawide Bandgap Semiconductors

ARTICLES YOU MAY BE INTERESTED IN

Graphene-induced crystal-healing of AIN film by thermal annealing for deep ultraviolet lightemitting diodes

Applied Physics Letters 117, 181103 (2020); https://doi.org/10.1063/5.0028094

Full-composition-graded $In_XGa_{1-X}N$ films grown by molecular beam epitaxy Applied Physics Letters 117, 182101 (2020); https://doi.org/10.1063/5.0021811

Electron and hole mobility of rutile GeO₂ from first principles: An ultrawide-bandgap semiconductor for power electronics

Applied Physics Letters 117, 182104 (2020); https://doi.org/10.1063/5.0033284

Band offset determination for amorphous Al_2O_3 deposited on bulk AIN and atomic-layer epitaxial AIN on sapphire

Cite as: Appl. Phys. Lett. **117**, 182103 (2020); doi: 10.1063/5.0025835 Submitted: 18 August 2020 · Accepted: 26 October 2020 · Published Online: 5 November 2020

AFFILIATIONS

- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
- ²Naval Research Laboratory, Washington, DC 20375, USA
- ³American Society for Engineering Education Postdoctoral Fellow, Residing at Naval Research Laboratory, Washington, DC 20375, USA

Note: This paper is part of the Special Topic on Ultrawide Bandgap Semiconductors.

a) Author to whom correspondence should be addressed: marko.tadjer@nrl.navy.mil

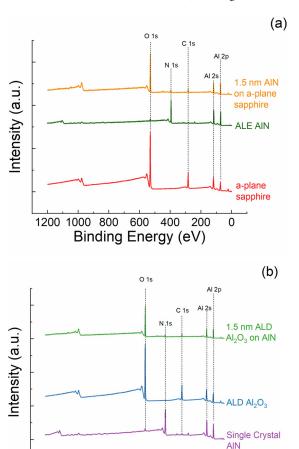
ABSTRACT

Valence and conduction band offsets of atomic layer deposition (ALD) Al_2O_3 deposited on bulk AlN crystals were determined using x-ray photoelectron spectroscopy to be $\Delta E_V = 0.75$ eV and $\Delta E_C = -1.45$ eV, with a measured energy gap of the Al_2O_3 film of 6.9 eV. In addition, crystalline AlN deposited by atomic layer epitaxy on sapphire was evaluated, resulting in a valence band offset of $\Delta E_V = -0.75$ eV and a conduction band offset of $\Delta E_C = 3.25$ eV due to the wider bandgap of the crystalline Al_2O_3 substrate compared to amorphous ALD Al_2O_3 . Both heterojunctions exhibited type-II behavior and similar valence band offsets.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025835

The past several years have witnessed the emergence of a number of wide and ultra-wide bandgap (UWBG) semiconductors for electronic device applications. Gallium-based compounds such as gallium nitride (GaN), which has found widespread commercial application, and gallium oxide (Ga2O3), which has only recently gathered widespread interest as a device material, both offer advantageous properties such as a high critical field.^{2,3} Additionally, the capability to incorporate Al and form ternary alloys has further extended the capabilities of these material systems into heteroepitaxial device structures such as AlGaN/GaN and (AlGa)₂O₃/Ga₂O₃ heterostructure field effect transistors (HFETs).4,5 At high Al concentrations, AlN and Al2O3 are the widest bandgap III-Nitride and III-Oxide components of these material systems.⁶⁻⁹ In particular, AlN technology has demonstrated native substrates, high quality epitaxial growth, and possibility for relatively shallow n-type donors. While AlN/GaN HFETs have been developed for some time, the first AlN channel transistor with implanted source/ drain was only recently demonstrated. 10-12 Most recently, improved understanding of Si doping in AlN has renewed interest in this UWBG material for electronic devices for high breakdown voltage,

high power applications. ^{13–17} As a result, a number of fundamental electronic experiments, such as the presently reported band diagrams, are needed for UWBG materials such as AlN, as has been the case with recent band diagram investigations for other promising materials such as β -Ga₂O₃. ²


One of the fundamental methods of understanding the electronic properties of heterostructures between different materials is the construction of their band diagram. In the literature, band offset reports of oxide-semiconductor and semiconductor-semiconductor heterostructures abound as device technology has advanced over the years. Particularly for the III-N and III-O systems, a large body of literature exists for band offsets as different gate dielectrics are explored: SiO₂, Al₂O₃, and HfO₂ being among the most popular. Ternary nitride alloys with Al and their band structures have been reported. Band offsets between the binary III-O and III-N semiconductor heterojunctions have also been recently explored. The band alignments of AlN, GaN, and InN heterojunctions to Ga₂O₃, as well as GaN-Al₂O₃ and InN-Al₂O₃, are all known. 19-23 The InN-In₂O₃ heterojunction, which is relevant for thin-film transistor technology, has been studied as

Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

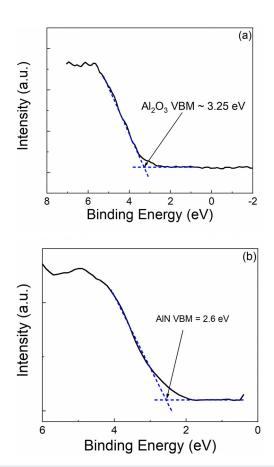
well. ²⁴ This paper aims to bridge the current gap in band offset knowledge between oxides and nitrides by characterizing the AlN-Al $_2$ O $_3$ heterojunction using deposited films of Al $_2$ O $_3$ and AlN on single-crystalline substrates of AlN and Al $_2$ O $_3$, respectively.

We deposited amorphous Al₂O₃ on bulk single-crystalline AlN substrates using atomic layer deposition. In addition, atomic-layer deposited epitaxial AlN has been grown on substrates of a-plane Al₂O₃. Al₂O₃ was deposited by atomic layer deposition (ALD) on single-crystalline AlN substrates obtained commercially. These samples are, henceforth, referred to as Al₂O₃/AlN. Both thick (200 nm) and thin (1.5 nm) layers of the Al₂O₃ dielectric were deposited to measure both the bandgaps and core levels. For pre-deposition substrate cleaning, the following rinse sequence was employed: acetone, isopropyl alcohol (IPA), dry N₂, and finally ozone exposure for 15 min. ALD Al₂O₃ was deposited at 200 °C in a Cambridge Nano Fiji 200 using a trimethylaluminum source and a remote inductively coupled plasma (ICP) of O₂ at 300 W.^{25,26}

The atomic layer epitaxial (ALE) AlN films on the a-place sapphire, henceforth referred to as AlN/Al₂O₃, were grown at 525 °C

FIG. 1. XPS survey scans of (a) single crystal AlN, ALD Al_2O_3 , and a heterostructure of Al_2O_3 on AlN and (b) a-plane sapphire, ALE AlN, and a heterostructure of AlN on sapphire. The intensity is in arbitrary units (a.u.).

400

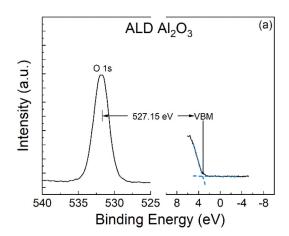

0

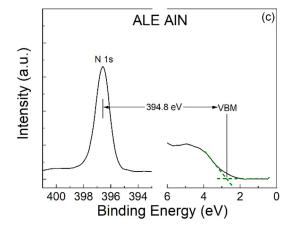
600

Binding Energy (eV)

using a Veeco/Cambridge Nanotech (CNT) Fiji 200 and ultra-high purity (UHP) gases, with constant 100 and 30 sccm flows of Ar through the plasma source and precursor line, respectively. Prior to AlN deposition, the Al_2O_3 substrates were cleaned by sonicating in sequential 5 min baths of acetone and isopropanol at $40\,^{\circ}$ C and a final bath in de-ionized water. The substrates were then dried in N_2 , loaded into the reactor, and heated to growth temperature. An *in situ* cleaning process was performed immediately prior to growth. The *in situ* cleaning process consisted of subjecting the substrates to 10 cycles each of H_2 and N_2 plasma exposure at 300 W forward power, during which 75 (50) sccm H_2 (N_2) was flowed through the plasma source in addition to the Ar. Every cycle was 20 s in duration and was followed by a 10 s purge with only Ar flowing.

The AlN growth process consisted of 500 cycles of the following. First, the sample surface was saturated by a 60 ms pulse of trimethylaluminum. The chamber was then purged by the Ar flow for 8 s in order to remove excess precursor and reaction byproducts. Next, the precursor-terminated surface was exposed to a mixed N_2/H_2 plasma at 300 W forward power for 20 s, during which 75 sccm of N_2 and 10 sccm of H_2 were flowed through the plasma source in addition to the Ar. Finally, residual gases and reaction byproducts were removed by a second Ar purge, completing the cycle.

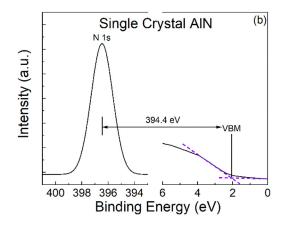

FIG. 2. XPS spectra of the valence band maxima (VBM) for (a) reference thick-film ALD Al_2O_3 and (b) thick-film ALE AIN. The intensity is in arbitrary units (a.u.).


1200 1000 800

After deposition, the Al_2O_3/AlN and AlN/Al_2O_3 samples were transferred into the chamber of an ULVAC PHI XPS system. A monochromatic, Al x-ray source with a power of 300 W and a dual beam charge neutralization system with simultaneous low-energy electron and ion means were used to perform the charge-compensated XPS measurement. Charge correction was performed using the adventitious carbon (C–C) line in the C 1s spectra at 284.8 eV. All spectroscopic equipment and electron analyzers were grounded. Samples were electronically insulated from the chuck to avoid differential charging effects, which were not observed. The bandgap of Al_2O_3 was measured using reflection electron energy loss spectroscopy (REELS) with a 1 kV electron beam and the hemispherical electron analyzer.

The band offsets of the Al_2O_3/AlN and AlN/Al_2O_3 heterojunctions were measured with high precision using the XPS method developed by Kraut *et al.*²⁹ To obtain band offsets using this technique, the core energy levels and the valence band maxima of each material need to be measured first. For the Al_2O_3/AlN heterojunction, the valence band offset (VBO) is then given by

$$\Delta E_V = \left(E_{core}^{Al2O3} - E_{VBM}^{Al2O3}\right) - \left(E_{core}^{AlN} - E_{VBM}^{AlN}\right) - \left(E_{core}^{O1s} - E_{core}^{N1s}\right). \tag{1}$$



For the conduction band offset of the heterojunction, the bandgap of each constituent material needs to be known. The conduction band offset is thus given by

$$\Delta E_C = E_G^{Al2O3} - E_G^{AlN} - |\Delta E_V|. \tag{2}$$

Figure 1 shows the XPS scans of the two Al_2O_3 films and the bulk AlN reference. The signature Al 2p, N 1s, and O 1s peaks from the two materials expected to be present were readily observable. An O 1s peak was observable on the AlN substrate reference scan [Fig. 1(a)] but was greatly suppressed and was likely due to O impurities in the crystal. The N 1s peak showed the highest intensity in the AlN substrate and was suppressed as thin ALD Al_2O_3 was deposited. The N 1s peak was not observed from the sample with thick ALD Al_2O_3 on the AlN substrate. Nearly identical peaks were observable from the XPS scans of the ALE AlN films on a-plane sapphire, as shown in Fig. 1(b).

Figure 2 shows the measured valence band maxima (VBM) from the thick Al_2O_3 film [Fig. 2(a)] and the bulk AlN substrate [Fig. 2(b)] as 3.25 and 2.6 eV, respectively. Identical results (not shown) were obtained for the AlN/sapphire sample. This is particularly interesting

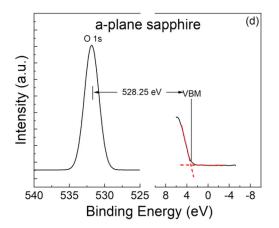


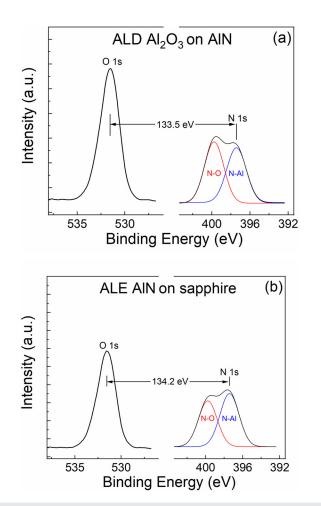
FIG. 3. High resolution XPS spectra for the vacuum-core delta regions of (a) reference thick film ALD Al_2O_3 and (b) reference single crystal AIN for the ALD Al_2O_3 /AIN sample; (c) thick film ALE AIN and (d) reference Al_2O_3 for the ALE AIN/ Al_2O_3 sample. The intensity is in arbitrary units (a.u.).

TABLE I. Summary of measured core levels (eV) for single crystal AIN, ALD Al₂O₃, and a heterostructure of ALD Al₂O₃ deposited on bulk AIN.

Single crystal AlN					A	LD Al ₂ O ₃	Thin ALD Al ₂ O ₃ on single crystal AlN		
Core level	VBM	Core level peak	Core-VBM	Core level	VBM	Core level peak	Core—VBM	Δ Core level N1s—O1s	Valence band offset (VBO)
N1s	2.1	396.5	394.4	O1s	3.25	530.4	527.15	-133.5	0.75 ± 0.05

TABLE II. Summary of measured core levels (eV) for a-plane sapphire, ALE AIN, and a heterostructure of AIN on sapphire.

Reference Al ₂ O ₃					Refe	erence AlN	Thin AlN on Al ₂ O ₃		
Core level	VBM	Core level peak	Core—VBM	Core level	VBM	Core level peak	Core—VBM	Δ Core level O1s—N1s	Valence band offset (VBO)
O1s	3.25	531.50	528.25	N1s	2.6	397.4	394.8	134.2	-0.75 ± 0.05


considering that amorphous ALD Al₂O₃ and a bulk sapphire crystal were compared in this work. In comparison to previous work, similar valence band maxima for amorphous and crystalline Al₂O₃ were also reported by Filatova and Konashuk³¹ and Balzarotti and Bianconi.³²

To obtain the energy difference between the VBM energies for each material and the core shell N 1s electrons for AlN and O 1s electrons for Al₂O₃, the previously measured VBM maxima are compared with core shell XPS data obtained from the 200 nm thick films. The energy difference spectra are shown in Fig. 3(a) for the ALD Al₂O₃, Fig. 3(b) for the bulk AlN substrate, Fig. 3(c) for the ALE AlN film, and Fig. 3(d) for the sapphire substrate. The energies measured from each comparison were 527.15 eV [Fig. 3(a)], 394.4 eV [Fig. 3(b)], 394.8 eV [Fig. 3(c)], and 528.25 eV [Fig. 3(d)], respectively. These results are summarized in the first two columns of Tables I and II.

To complete obtaining the experimental data required in Eq. (1), the energy difference between the same two core shell electron energies at the interface of the heterojunction was measured on samples of a 1.5 nm thick film on a bulk substrate. Figure 4(a) shows the core level difference from the 1.5 nm thick ALD Al₂O₃ film on the AlN substrate to be 133.5 eV. For the 1.5 nm ALE AlN film on sapphire, this energy difference was measured to be 134.2 eV, as shown in Fig. 4(b). Thus, according to Eq. (1), a VBO of $+0.75\pm0.05$ eV was calculated for the ALD Al₂O₃ on the bulk AlN sample, whereas a VBO of -0.75 ± 0.05 eV was calculated for the ALE AlN on the sapphire sample. These results are summarized in Tables I and II as well.

The REELS data for the amorphous ALD Al $_2$ O $_3$ film are shown in Fig. 5, indicating a 6.9 eV bandgap. The bandgap of crystalline sapphire substrates has been reported in several works. ^{6.7} In this case, we assumed a bandgap of 8.7 eV for the a-Al $_2$ O $_3$ substrate. ^{7.33} The difference in bandgap between amorphous and crystalline Al $_2$ O $_3$ is due to their significant difference in density (4.0 g/cm 3 for α -Al $_2$ O $_3$ and 3.1–3.3 g/cm 3 for amorphous phase Al $_2$ O $_3$), which in turn results in a significant coordination difference. ^{34–39} The bandgap of ALE AlN has been reported previously to be 6.2 eV. The bandgap of bulk AlN was assumed to be 6.2 eV as well, as both materials are of crystalline nature. ⁹

The resulting energy band diagrams are shown in Fig. 6, which illustrates how conduction band offsets are obtained from the valence

FIG. 4. High resolution XPS spectra for (a) 1.5 nm ALD Al_2O_3 on AlN and (b) 1.5 nm ALE AlN on Al_2O_3 (sapphire) core delta regions. The intensity is in arbitrary units (a.u.).

FIG. 5. Bandgap of the ${\rm Al_2O_3}$ used in this study determined by RHEELS data. The intensity is in arbitrary units (a.u.).

band offset and the energy gap of the two constituent materials. Thus, the conduction band offset was calculated to be 1.45 eV based on the valence band offset of +0.75 eV for ALD Al₂O₃ on bulk AlN [Fig. 6(b)] and the energy gaps of 6.9 eV and 6.2 eV for ALD Al₂O₃ and bulk AlN, respectively, resulting in a type-II band diagram for the case of ALD amorphous Al₂O₃ deposited on a crystalline AlN substrate. For the ALE AlN on sapphire, type-II behavior was obtained as well with a conduction band offset of 3.25 eV, owing to the larger bandgap for the sapphire substrate [Fig. 6(a)]. In both cases, the experimentally obtained conduction band offsets were significantly higher than the values reported by Robertson and Falabretti.³⁹

Obtaining the band offsets for this heterojunction has two important consequences. First, it shows that Al₂O₃ is a possible candidate dielectric for AlN electronic devices such as lateral AlN transistors. 10 Second, it lays the groundwork for future experiments into the band offsets for heterojunctions of ternary oxide alloys such as (Al_xGa_{1-x})₂O₃ to both binary and ternary nitrides. Similarly, our recent study of band offsets in the InN/Ga2O3 system had complemented the band offset reports for GaN/Ga2O3 and AlN/Ga2O3, allowing us to combine the data in order to estimate band offsets for the ternary nitride alloys to Ga₂O₃. We note that band offset data for the In₂O₃/GaN and In₂O₃/AlN heterojunctions are still lacking in the literature, as well as bowing parameter data for the (Al_xIn_{1-x})₂O₃ ternary oxide alloy as phase segregation likely is a major issue when determining the fundamental crystal structure of this alloy. 40,41 Future work will thus focus on completing the characterization of band offsets along the ternary spectra of Al₂O₃, Ga₂O₃, AlN, GaN, In₂O₃, and InN.

The band offset of the Al₂O₃/AlN heterojunction has remained unexplored so far, as it has not been relevant for device applications. Understanding this heterostructure will pave the way for further experiments into oxide/nitride semiconductor integration. In previous studies of another potentially relevant heterojunction, InN-Ga₂O₃, it was proposed that knowledge of binary heterojunction band offsets could be used to calculate and predict band offsets for ternary heterojunctions.²¹ This was done for the ternary nitride compounds AlGaN, AlInN, and InGaN with the binary compound Ga₂O₃. In that work, it was noted that in order to calculate the band offsets for ternary oxides to binary nitrides, knowledge of the Al₂O₃/AlN system is necessary. Furthermore, it was noted that eventually oxide and nitride semiconductor integration effort will be able to produce heterojunctions between ternary oxides and nitrides directly and proposed a set of simple equations to extrapolate their band offsets using the binary

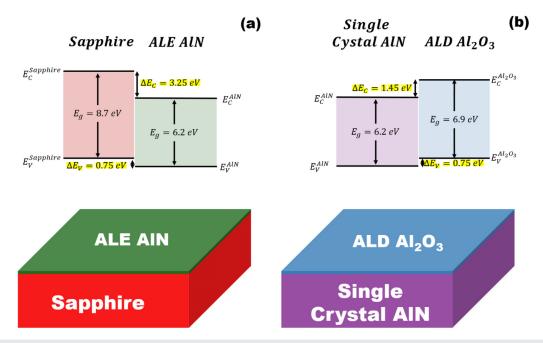


FIG. 6. Band diagrams for (a) ALD Al₂O₃ on bulk AlN and (b) ALE AlN on a-plane sapphire (a-Al₂O₃)

compounds' band offset data. The measurements presented in this work present the last missing binary oxide/nitride semiconductor band offset data before any further band offset studies of ternary oxide/nitride heterojunctions can be performed.

In summary, the band alignments of ALD Al_2O_3 on single crystal AlN and crystalline AlN on sapphire were measured. These are valuable in providing input to first-principles calculations of the band offsets for ternary oxide alloys such as $(Al_xGa_{1-x})_2O_3$ and $(In_xGa_{1-x})_2O_3$ to the binary III-nitride compounds GaN, AlN, and InN. This methodology might potentially be extended to generalize band offset calculations between heterojunctions of ternary nitrides, ternary oxides, or ternary oxide-nitride superlattices. This task is beyond the scope of this current work, primarily because additional understanding of the effects of strain, polarization, phase segregation, and interfacial defects must be developed, both experimentally and from first principles, in order to identify and minimize potential sources of error. We expect that future heterogeneous integration effort might benefit from integrating such dissimilar materials in order to meet the challenges of next-generation ultra-wide bandgap semiconductor electronic devices.

The project or effort depicted was partially sponsored by the Department of the Defense, Defense Threat Reduction Agency, No. HDTRA1-17-1-011, monitored by Jacob Calkins. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. Research at the Naval Research Laboratory was supported by the Office of Naval Research.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

- ¹J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Adv. Electron. Mater. 4, 1600501 (2018).
- ²S. J. Pearton, J. Yang, P. H. Cary, I. V. F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).
- ³B. J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).
- ⁴S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, Appl. Phys. Express 10, 051102 (2017).
- ⁵U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proc. IEEE **90**(6), 1022–1031 (2002).
- ⁶H. Peelaers, J. B. Varley, J. S. Speck, and C. G. Van de Walle, Appl. Phys. Lett. 112, 242101 (2018).
- ⁷R. H. French, J. Am. Ceram. Soc. **13**, 471 (1990).
- ⁸L. Chen and B. J. Skromme, Appl. Phys. Lett. **85**, 4334 (2004).
- ⁹N. Nepal, S. B. Qadri, J. K. Hite, N. A. Mahadik, M. A. Mastro, and C. R. Eddy, Jr., Appl. Phys. Lett. **103**, 082110 (2013).
- 10 H. Okumura, S. Suihkonen, J. Lemettinen, A. Uedono, Y. Zhang, D. Piedra, and T. Palacios, Jpn. J. Appl. Phys., Part 1 57, 04FR11 (2018).

- ¹¹T. Kinoshita, T. Nagashima, T. Obata, S. Takashima, R. Yamamoto, R. Togashi, Y. Kumagai, R. Schlesser, R. Collazo, A. Koukitu, and Z. Sitar, Appl. Phys. Express 8, 061003 (2015).
- ¹²Y. Taniyasu, M. Kasu1, and T. Makimoto, Nature 441, 325 (2006).
- ¹³M. H. Breckenridge, Q. Guo, A. Klump, B. Sarkar, Y. Guan, J. Tweedie, R. Kirste, S. Mita, P. Reddy, R. Collazo, and Z. Sitar, Appl. Phys. Lett. 116, 172103 (2020).
- ¹⁴R. Yamamoto, N. Takekawa, K. Goto, T. Nagashima, R. Dalmau, R. Schlesser, H. Murakami, R. Collazo, B. Monemar, Z. Sitar, and Y. Kumagai, J. Cryst. Growth 545, 125730 (2020).
- ¹⁵S. Washiyama, P. Reddy, B. Sarkar, M. H. Breckenridge, Q. Guo, P. Bagheri, A. Klump, R. Kirste, J. Tweedie, S. Mita, Z. Sitar, and R. Collazo, J. Appl. Phys. 127, 105702 (2020).
- ¹⁶P. Bagheri, R. Kirste, P. Reddy, S. Washiyama, S. Mita, B. Sarkar, R. Collazo, and Z. Sitar, Appl. Phys. Lett. 116, 222102 (2020).
- ¹⁷M. R. Hauwiller, D. Stowe, T. B. Eldred, S. Mita, R. Collazo, Z. Sitar, and J. LeBeau, APL Mater. 8, 091110 (2020).
- ¹⁸H. Ünlü and A. Asenov, J. Phys. D: Appl. Phys. 35, 591 (2002).
- ¹⁹H. Sun, C. G. Torres Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, Appl. Phys. Lett. 111, 162105 (2017).
- ²⁰W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Z. Wei, Nanoscale Res. Lett. 7, 562 (2012).
- ²¹C. Fares, M. J. Tadjer, J. Woodward, N. Nepal, M. A. Mastro, C. R. Eddy, Jr., F. Ren, and S. J. Pearton, ECS J. Solid State Sci. Technol. 8, Q3154 (2019).
- ²²T. L. Duan, J. S. Pan, and D. S. Ang, Appl. Phys. Lett. 102, 201604 (2013).
- ²³A. Eisenhardt, G. Eichapfel, M. Himmerlich, A. Knübel, T. Passow, C. Wang, F. Benkhelifa, R. Aidam, and S. Krischok, Phys. Status Solidi C 9(3–4), 685 (2012).
- ²⁴H. P. Song, A. L. Yang, H. Y. Weil, Y. Guol, B. Zhangl, G. L. Zheng, S. Y. Yang, X. L. Liu, Q. S. Zhu, Z. G. Wang, T. Y. Yang, and H. H. Wang, Appl. Phys. Lett. **94**, 222114 (2009).
- 25C. Fares, F. Ren, E. Lambers, D. C. Hays, B. P. Gila, and S. J. Pearton, J. Electr. Mater. 48, 1568 (2019).
- ²⁶C. Fares, M. Xian, D. J. Smith, M. R. McCartney, M. Kneiß, H. von Wenckstern, M. Grundmann, M. Tadjer, F. Ren, and S. J. Pearton, J. Appl. Phys. 127, 105701 (2020).
- ²⁷A. D. Koehler, N. Nepal, T. J. Anderson, M. J. Tadjer, K. D. Hobart, C. R. Eddy, and F. J. Kub, IEEE Electron Dev. Lett. 34, 1115 (2013).
- ²⁸P. Carey, F. Ren, D. C. Hays, B. P. Gila, S. J. Pearton, S. Jang, and A. Kuramata, Jpn. J. Appl. Phys., Part 1 56, 071101 (2017).
- ²⁹E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
- ³⁰H. C. Shin, D. Tahir, S. Seo, Y. R. Denny, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, Surf. Interface Anal. 44, 623 (2012).
- ³¹E. O. Filatova and A. S. Konashuk, J. Phys. Chem. C **119**, 20755–20761 (2015).
- ³²A. Balzarotti and A. Bianconi, Phys. Status Solidi B **76**, 689 (1976).
- ³³V. V. Afanas'ev, M. Houssa, A. Stesmans, C. Merckling, T. Schram, and J. A. Kitt, Appl. Phys. Lett. **99**, 072103 (2011).
- 34X.-Y. Cui, S. P. Ringer, G. Wang, and Z. H. Stachurski, J. Chem. Phys. 151, 194506 (2019).
- 35V. A. Pustovarov, V. Sh. Aliev, T. V. Perevalov, V. A. Gritsenko, and A. P. Eliseev, J. Exp. Theor. Phys. 111, 989–995 (2010).
- 36T. V. Perevalov, V. A. Gritsenko, and V. V. Kaichev, Eur. Phys. J. Appl. Phys. 52, 30501 (2010).
- ³⁷I. Costina and R. Franchy, Appl. Phys. Lett. **78**, 4139 (2001).
- ³⁸D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. **96**, 032905 (2010).
- ³⁹J. Robertson and B. Falabretti, J. Appl. Phys. **100**, 014111 (2006).
- ⁴⁰A. F. M. Anhar Uddin Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Sarker, M. Zhu, M. R. Karim, B. Mazumder, J. Hwang, and H. Zhao, APL Mater. 8, 031104 (2020).
- ⁴¹E. A. Anber, D. Foley, A. C. Lang, J. Nathaniel, J. L. Hart, M. J. Tadjer, K. D. Hobart, S. J. Pearton, and M. Taheri, Appl. Phys. Lett. 117, 152101 (2020).